Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Individuals often aim to reverse undesired outcomes in interactions with automated systems, like loan denials, by either implementing system-recommended actions (recourse), or manipulating their features. While providing recourse benefits users and enhances system utility, it also provides information about the decision process that can be used for more effective strategic manipulation, especially when the individuals collectively share such information with each other. We show that this tension leads rational utility-maximizing systems to frequently withhold recourse, resulting in decreased population utility, particularly impacting sensitive groups. To mitigate these effects, we explore the role of recourse subsidies, finding them effective in increasing the provision of recourse actions by rational systems, as well as lowering the potential social cost and mitigating unfairness caused by recourse withholding.more » « lessFree, publicly-accessible full text available May 5, 2026
- 
            The increasing automation of high-stakes decisions with direct impact on the lives and well-being of individuals raises a number of important considerations. Prominent among these is strategic behavior by individuals hoping to achieve a more desirable outcome. Two forms of such behavior are commonly studied: 1) misreporting of individual attributes, and 2) recourse, or actions that truly change such attributes. The former involves deception, and is inherently undesirable, whereas the latter may well be a desirable goal insofar as it changes true individual qualification. We study misreporting and recourse as strategic choices by individuals within a unified framework. In particular, we propose auditing as a means to incentivize recourse actions over attribute manipulation, and characterize optimal audit policies for two types of principals, utility-maximizing and recourse-maximizing. Additionally, we consider subsidies as an incentive for recourse over manipulation, and show that even a utility-maximizing principal would be willing to devote a considerable amount of audit budget to providing such subsidies. Finally, we consider the problem of optimizing fines for failed audits, and bound the total cost incurred by the population as a result of audits.more » « less
- 
            Group-fair learning methods typically seek to ensure that some measure of prediction efficacy for (often historically) disadvantaged minority groups is comparable to that for the majority of the population. When a principal seeks to adopt a group-fair approach to replace another, the principal may face opposition from those who feel they may be harmed by the switch, and this, in turn, may deter adoption. We propose that a potential mitigation to this concern is to ensure that a group-fair model is also popular, in the sense that, for a majority of the target population, it yields a preferred distribution over outcomes compared with the conventional model. In this paper, we show that state of the art fair learning approaches are often unpopular in this sense. We propose several efficient algorithms for postprocessing an existing group-fair learning scheme to improve its popularity while retaining fairness. Through extensive experiments, we demonstrate that the proposed postprocessing approaches are highly effective in practice.more » « less
- 
            The increasing automation of high-stakes decisions with direct impact on the lives and well-being of individuals raises a number of important considerations. Prominent among these is strategic behavior by individuals hoping to achieve a more desirable outcome. Two forms of such behavior are commonly studied: 1) misreporting of individual attributes, and 2) recourse, or actions that truly change such attributes. The former involves deception, and is inherently undesirable, whereas the latter may well be a desirable goal insofar as it changes true individual qualification. We study misreporting and recourse as strategic choices by individuals within a unified framework. In particular, we propose auditing as a means to incentivize recourse actions over attribute manipulation, and characterize optimal audit policies for two types of principals, utility-maximizing and recourse-maximizing. Additionally, we consider subsidies as an incentive for recourse over manipulation, and show that even a utility-maximizing principal would be willing to devote a considerable amount of audit budget to providing such subsidies. Finally, we consider the problem of optimizing fines for failed audits, and bound the total cost incurred by the population as a result of audits.more » « less
- 
            In many societal resource allocation domains, machine learning methods are increasingly used to either score or rank agents in order to decide which ones should receive either resources (e.g., homeless services) or scrutiny (e.g., child welfare investigations) from social services agencies. An agency’s scoring function typically operates on a feature vector that contains a combination of self-reported features and information available to the agency about individuals or households. This can create incentives for agents to misrepresent their self-reported features in order to receive resources or avoid scrutiny, but agencies may be able to selectively audit agents to verify the veracity of their reports. We study the problem of optimal auditing of agents in such settings. When decisions are made using a threshold on an agent’s score, the optimal audit policy has a surprisingly simple structure, uniformly auditing all agents who could benefit from lying. While this policy can, in general be hard to compute because of the difficulty of identifying the set of agents who could benefit from lying given a complete set of reported types, we also present necessary and sufficient conditions under which it is tractable. We show that the scarce resource setting is more difficult, and exhibit an approximately optimal audit policy in this case. In addition, we show that in either setting verifying whether it is possible to incentivize exact truthfulness is hard even to approximate. However, we also exhibit sufficient conditions for solving this problem optimally, and for obtaining good approximations.more » « less
- 
            null (Ed.)In many societal resource allocation domains, machine learn- ing methods are increasingly used to either score or rank agents in order to decide which ones should receive either resources (e.g., homeless services) or scrutiny (e.g., child welfare investigations) from social services agencies. An agency’s scoring function typically operates on a feature vector that contains a combination of self-reported features and information available to the agency about individuals or households. This can create incentives for agents to misrepresent their self-reported features in order to receive resources or avoid scrutiny, but agencies may be able to selectively au- dit agents to verify the veracity of their reports. We study the problem of optimal auditing of agents in such settings. When decisions are made using a threshold on an agent’s score, the optimal audit policy has a surprisingly simple structure, uniformly auditing all agents who could benefit from lying. While this policy can, in general be hard to compute because of the difficulty of identifying the set of agents who could benefit from lying given a complete set of reported types, we also present necessary and sufficient conditions under which it is tractable. We show that the scarce resource setting is more difficult, and exhibit an approximately optimal audit policy in this case. In addition, we show that in either setting verifying whether it is possible to incentivize exact truthfulness is hard even to approximate. However, we also exhibit sufficient conditions for solving this problem optimally, and for obtaining good approximations.more » « less
- 
            Deception is a fundamental issue across a diverse array of settings, from cybersecurity, where decoys (e.g., honeypots) are an important tool, to politics that can feature politically motivated “leaks” and fake news about candidates. Typical considerations of deception view it as providing false information. However, just as important but less frequently studied is a more tacit form where information is strategically hidden or leaked. We consider the problem of how much an adversary can affect a principal's decision by “half-truths”, that is, by masking or hiding bits of information, when the principal is oblivious to the presence of the adversary. The principal's problem can be modeled as one of predicting future states of variables in a dynamic Bayes network, and we show that, while theoretically the principal's decisions can be made arbitrarily bad, the optimal attack is NP-hard to approximate, even under strong assumptions favoring the attacker. However, we also describe an important special case where the dependency of future states on past states is additive, in which we can efficiently compute an approximately optimal attack. Moreover, in networks with a linear transition function we can solve the problem optimally in polynomial time.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available